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Computational fluids dynamics (CFDs) and numerical optimization techniques are applied in an inte-
grated methodology to explore the effects of different geometric characteristics on fluid mixing in a
staggered herringbone micromixer (SHM). To quantify the mixing intensity in the mixer a mixing index
is defined on the basis of the intensity of segregation of the mass concentration on a cross-section plane
in the mixing channel. Four geometric parameters, i.e., aspect ratio of the mixing channel, ratio of groove
rooved micromixer
FD
ulti-objective optimization
esign of experiments
urrogate modelling
enetic algorithm

depth to channel height, ratio of groove width to groove pitch and the asymmetry factor (offset) of
groove, are the design variables initially selected for optimization, then two more parameters, i.e., angle
of the groove and number of grooves per channel section, are evaluated. The whole optimization is
conducted with a multi-objective approach for which the mixing index at the outlet section and the
pressure drop in the mixing channel are the performance criteria used as objective functions. The Pareto
front of designs with the optimum trade-off, maximum mixing index with minimum pressure drop, is

obtained.

. Introduction

Microfluidics systems share properties such as laminar flows,
educed thermal gradients and small sample/reagent volumes
hat help for effective process control and reproducibility. These
dvantages have been exploited to build microfluidic devices for
ab-on-a-chip applications [1] where functions such as separa-
ion, mixing, reaction, synthesis and analysis are performed. This

icrodevice concept and technology has developed rapidly and
as a growing use in biological [2] and chemical [3,4] appli-
ations: sorting of cells, drug delivery, chemical and enzyme
eactions, synthesis of nucleic acids and analysis of DNA and
roteins. In most microfluidic applications, e.g. fast chemical
eactions, DNA separation and amplification, the performance
f the microfluidic system is governed by its mixing efficiency.
herefore, among microfluidic devices, micromixers have been
eveloped to achieve fast mixing and they play an important
ole in Bio-Micro-Electro-Mechanical Systems (BioMEMS), micro-

eat exchangers, microreactors and micro-total-analysis systems
�-TAS).

In microfluidic devices, fluid flows are characterized by low
alues of Reynolds number at which the flow is laminar and molec-
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ular diffusion is the dominant mixing mechanism. For the scales of
typical microchannels under practical flow conditions, mixing by
diffusion is a very slow process and consequently it increases the
length of microchannels and time required for complete mixing.
Microfluidic mixing can be improved by stretching and folding of
fluids which redistributes the fluids, decreases the diffusion path
and increases the interfacial area between the fluids, which in
turn increases the probability for solute transport between fluids
and, therefore, the mixing performance. Design of micromixers is
based on the achievement of three basic processes of fluids mixing:
molecular diffusion, stretching and folding and break up [5]. Var-
ious micromixer designs have been reported in the literature and
they can be classified into active and passive micromixers [6,7].
Active micromixers perturb the flow field either by using moving
parts or an external source of energy such as an electric field, mag-
netic field, acoustic waves or varying pressure gradients. Passive
micromixers do not use external actuation except a pressure head
or pump to drive flows into the microfluidic system where mixing
is achieved by creating a transverse flow through modification of
their geometries.

In general, active micromixers can stir up fluids better than
passive micromixers, but they all share the drawback of their com-

plexity of fabrication or operation. Therefore, passive micromixers
have been preferred in most applications due to their simple design,
easiness of fabrication and integration compared with their active
counterparts and they are frequently adapted in the development
of integrated microfluidic chips.

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:cesar.cortes@ucl.ac.uk
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One of the passive methods to enhance mixing process is to
lace microstructured objects on one or more walls of the chan-
el. One of these designs, the staggered herringbone micromixer
SHM) [8], has been found to give good mixing performance at
ow Reynolds numbers (Re < 100). A transverse flow is produced
hrough the asymmetric herringbone shaped grooves on the floor
f the channel to generate two counter-rotating helical flows that
reate a chaotic flow profile due to the alternated asymmetry of the
erringbones along the length of the micromixer.

Several theoretical, experimental and numerical studies have
een carried out on the SHM with the aim of understanding the
ixing mechanism and the effect of various geometrical parame-

ers on the mixing quality. Stroock and McGraw [9] approximated
he complex three-dimensional flow field using a two dimensional
id-driven cavity model that was tuned to provide qualitative agree-

ent to experimental data and studied the effect of varying two
eometric parameters: the asymmetry factor of the groove and the
umber of grooves in each cycle; Liu et al. [10] studied the influence
f different fluid properties and a large concentration gradient on
ixing at Re = 1 and 10 for a fixed geometry; Aubin et al. [11,12]

nvestigated numerically the effect of three geometric parameters:
he groove depth, the groove width and the number of grooves per
ycle, using a particle tracking method to visualize and quantify the
ixing performance; Kang and Kwon [13] applied a coloured parti-

le tracking method to study numerically the mixing performance
f three types of grooved micromixers including the SHM; Yang
t al. [14] studied the effects of varying herringbone groove offset,
epth, and angle, as well as the ratio of inlet channel width to mix-

ng channel width by applying CFD to nine configurations defined
ith an array given by the Taguchi method; Li and Chen [15] used

he Lattice Boltzmann method to study numerically the effect on
ixing performance of the asymmetry factor and the number of

rooves per half-cycle; Hassel and Zimmerman [16] presented a
umerical study of the flow through the SHM to characterize the
ffect of the grooves on moving fluid across the channel, in par-
icular of the groove depth in Re range 0–15 and of the number of
rooves per half-cycle; Lynn and Dandy [17] evaluated numerically
he generation of helical flows in the slanted groove micromixer
SGM) and its optimization, i.e., the increment of transverse flow,
y varying the ratio of the length of the grooves to the neighbour-

ng ridge for a given groove depth and channel aspect ratio, and
iscussed the implications of translating the optimized parame-
ers to the SHM design; Ansari and Kim [18] used a numerical
rocedure that combines three-dimensional Navier–Stokes anal-
sis and a numerical optimization technique, the response surface
ethod (RSM), to enhance mixing performance by optimizing the

roove using the ratio of groove depth to channel height and angle
f the groove; Singh et al. [19] introduced a new simplified for-
ulation of the mapping method [20] to make it much simpler to

mplement and applied the method to optimize three micromixer
esigns including the SHM for which groove depth and number
f grooves per half-cycle were used as parameters; very recently,
ortes-Quiroz et al. [21,22] presented a multi-criteria design opti-
ization methodology for micromixers based on the integration of

FD with numerical optimization techniques and applied it for the
ptimization of four geometries of the SHM to obtain good mixing
erformance with low pressure loss.

Definitely, mixing in the SHM can be effectively increased by
ptimizing the shape of the grooves and channel. As cited above,
revious work has already investigated on the effects of geometric
arameters on mixing but these studies do not exactly ‘optimize’

ut ‘improve’ the micromixers design to enhance mixing perfor-
ance since they do not cover the whole design space and work

asically through parametric investigation on discrete number of
eometries. Few attempts have systematically used automatic opti-
ization techniques for designing micromixers and almost all of
ering Journal 160 (2010) 852–864 853

them applied a single criterion optimization with mixing perfor-
mance as the only objective. However, in most problems of practical
interest multi-objective criteria need to be met, e.g. mixing vs. pres-
sure loss, energy consumption or dissipation, residence time.

In this paper, a design and multi-objective optimization
methodology is applied to the SHM. It systematically integrates
CFD with an optimization strategy based on the use of design of
experiments (DOE), surrogate modelling (SM) and multi-objective
genetic algorithm (MOGA) techniques. The study is based on and
complements the work of Cortes-Quiroz et al. [22]. The effects on
mixing and pressure drop of six selected geometric parameters
of the SHM have been evaluated and the parameters optimized
accordingly. The goal of the optimization is to obtain SHM configu-
rations that provide maximum mixing index with lowest pressure
drop.

2. Numerical analysis

A schematic diagram of the SHM channel is shown in Fig. 1 which
displays the geometric characteristics considered in this study. For
all the models prepared in this study, the mixing channel length is
3 mm. It is important to mention that notation in this study differs
from previous studies on SHM geometries; ‘h’ refers to the height
of the inlet and mixing channels, i.e., dimension ‘h’ does not include
the depth of the groove, and ‘�’ refers to groove pitch in direction
perpendicular to the walls of the grooves, i.e., dimension ‘�’ is not
the pitch of the grooves at the intersection with the channel walls
(axial pitch). This definition of groove pitch has only be found in
[22] and it is particularly important to use it in this paper to avoid
the interaction effects between parameters wg/� and � since vari-
ation of the latter in a fixed axial pitch design implies change in
the channel width wg which means these parameters would not be
independent of each other. Also, the distribution of the grooves in
the different models prepared for this study does not have a break
in the space between half-cycles of grooves, i.e., the groove pitch
is invariable in the whole channel length. The parameter Ng can
change the number of grooves in the fixed 3 mm channel length
used in this study; nevertheless, the creation of the SHM models
in this study has taken into account no groove is abruptly cut at
the outlet end nor it is too close to the outlet end (<150 �m) and
CFD investigation has been made to confirm there is not significant
influence on the results.

The analysis of the transport process in the SHM designs is per-
formed numerically. Flow field and mixing are computed using
ANSYS CFX-11 [23], commercial modelling software based on
the finite volume method. The flow has been defined as viscous,
isothermal, incompressible, laminar and in steady state, for which
the code solves the continuity equation, the momentum equation
(Navier–Stokes) and the species convection-diffusion equation.

Since numerical simulations are not free from numerical dif-
fusion error which arises from the discretization of the advection
terms in the Navier–Stokes equations, these terms in each equa-
tion are discretized with a second order differencing scheme which
minimizes numerical diffusion in the results. The condition of con-
vergence of simulations is the root-mean square (rms) normalized
residual of mass fraction falling below 1 × 10−5.

For the boundary conditions, a normal velocity is defined and
given the same value at both inlets for the fluids to come into
contact and start mixing in the T-junction, a constant pressure
(gauge pressure = 0) is specified at the outlet boundary and the

non-slip condition is used on the walls. Water at 25 ◦C (dynamic vis-
cosity, �H2O = 8.899E − 04 kg/m s; density, �H2O = 997 kg/m3) and
Ethanol (dynamic viscosity, �C2H60 = 1.197E − 03 kg/m s; density,
�C2H60 = 789 kg/m3) are the working fluids used for mixing where
the kinematic diffusivity of ethanol in water is 8.4E−10 m2/s, the
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Fig. 1. Geometric characteristics of the

oundary conditions for the species balance are mass fraction equal
o 0 at the inlet where pure water is fed and equal to 1 at the inlet
here Ethanol is fed.

GRIDGEN 15.1 [24] is used to build the geometries of SHM
esigns and to make grids for their full domains. A high qual-

ty mesh is essential for the accuracy of results, in particular for
nalyzing the effect of geometry on mixing. A structured grid of
exahedral elements is made in the models and arranged to pro-
ide sufficient resolution for boundary layers near the fluid–solid
nterface (walls) and sufficient number of nodes at the corners. Two

esh zones of the herringbone are shown in Fig. 2. To obtain mesh-
ndependent results from the simulations, a preliminary mesh size
ensitivity analysis was carried out to find the interval of mesh
ize at which convergence is reached for the computation of mix-
ng quality and pressure loss. The size of the mesh cells for all
he SHM models (inlet channels length = 0.5 mm, mixing chan-
el length = 3 mm) prepared for this study resulted in the range
f 0.7–4.5 �m approximately for a mesh density in the range of
.55–5.3 million hexahedra cells.

For the optimization process that is described in next sec-
ion, the grid distribution and the slight geometry variation of
he design models make comparable the level of any remaining

umerical diffusion in the results. Therefore, finding the optimum
eometries of the micromixer is possible with the grid quality in
odels domains, the discretization scheme of Navier–Stokes equa-

ions and the numerical optimization techniques employed in the
aper.

Fig. 2. Mesh details of T-junction of the SH
for parameterization and optimization.

3. Optimization methodology

Fig. 3 shows the flowchart diagram of the analysis and optimiza-
tion process for the optimization of the micromixer. The process
was explained by Cortes-Quiroz et al. [21,22] and here it will be
described more straightforward to define some parameters and
techniques to be used in the application of the methodology to the
shape optimization of the SHM design in Section 4.

The first step is to define what performance parameters (objec-
tive functions) are going to be optimized and to select the design
parameters with a range of variation for the optimization study.
Then, the design of experiments (DOE) method is used to create the
experimental table of designs points which correspond to a number
of geometries in the micromixer design space defined by the ranges
of the design parameters. CFD simulations are used on these geome-
tries to compute the performance parameters. Once the flow field
is solved for all the designs a surrogate modelling (SM) technique
can be used to define approximated response functions or surfaces
that describe the correlation between the performance parameters
and the design parameters. The accuracy of the response surface is
a key condition in the design process since it can be used to carry
out a sensitivity analysis that can be used to find the most critical

design parameters and to change the design geometry accord-
ingly to improve its performance [18], and in turn it defines the
accuracy of the final optimization step resulting from applying a
multi-objective genetic algorithm (MOGA) on the response surface.
The application of the MOGA on the response surface reduces dras-

M: (a) isometric view (b) top view.
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sentative enough to evaluate the influence of designs parameters
on performance parameters.

The Taguchi method [26] is used in this study. It is based on
orthogonal array (OA) of experiments that gives much reduced

Table 1
Design parameters of the SHM designs used with first DOE.

Levels Factorsa

A (w/h) B (dg/h) C (wg/�) D (b)

1 1.60 0.25 0.25 0.55
Fig. 3. Flowchart of the an

ically the computational cost of applying it on a great number of
esigns that might have to be solved first by CFD. The optimization
rocedure finally gives the optimum boundary of designs, i.e., the
areto front (Pf), that reveals the trade-offs between the perfor-
ance parameters in the design space.

.1. Definition of the parameters for the optimization study

The performance parameters defined for this study are the
ixing quality and the pressure drop in the channel. In order to
easure and compare the mixing quality using the outputs from

FD code, a mixing index is defined based on mass concentration
istribution. In this study, the definition of mixing index is based
n the intensity of segregation introduced by Danckwerts [25] and
s calculated by Eq. (1):

i = 1 −

√∫
A

(c − c̄)2dA

Ac̄(1 − c̄)
(1)

here c is the concentration distribution at the selected cross-
ection plane (in this study, it is the outlet plane at the end of the
ixing channel), c̄ is the averaged value of the concentration field

n the plane and A is the area of the plane. Mi reaches a value of 0
or a complete segregated system and a value of 1 for the homoge-
eously mixed case. The mass concentration information from CFD
nalyses is used in Eq. (1).

The second performance parameter is the pressure loss in the
ixing channel which is computed by the difference between the

rea weighted average of total pressure on the outlet plane and on
cross-section plane at the inlet of the mixing channel.

For the selection of the design parameters, conclusions from

revious work on mixing in the SHM (cited in Section 1) and a
ensitivity analysis of the influence of design parameters on the
ixing index led Cortes-Quiroz et al. [22] to use four design param-

ters for the optimization: aspect ratio of the mixing channel,
/h, ratio of groove depth to channel height, dg/h, ratio of groove
and optimization process.

width to groove pitch, wg/�, and the asymmetry factor, b, with
the next geometric features fixed: width of the mixing channel,
w = 200 �m, groove pitch, � = 100 �m, angle of the groove, � = 90◦,
number of grooves per half-cycle, Ng = 6, and width of inlet chan-
nels, D = 100 �m. This multi-criteria optimization is brought further
in this paper using the optimum geometry obtained by Cortes-
Quiroz et al. [22] as a reference design and optimizing then the
following parameters: ratio of groove depth to channel height, dg/h,
ratio of groove width to groove pitch, wg/�, angle of the groove, �,
and number of grooves per half-cycle, Ng, whereas other geometric
dimensions are kept fixed.

Table 1 shows the design parameters values used in the
first multi-criteria optimization study of the SHM [22] and
Table 2 shows similar information for the study completed in this
paper.

3.2. Design of experiments (DOE)

DOE method defines a subset of design points (for carrying out
experiments or simulations) from the design space which is repre-
2 2.40 0.50 0.50 0.70
3 3.20 0.75 0.75 0.85

a Factors are defined as follows: (A) aspect ratio of the mixing channel. (B) Ratio
of groove depth to mixing channel height. (C) Ratio of groove width to groove pitch.
(D) Asymmetry factor.
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Table 2
Design parameters of the SHM designs used with second DOE.

Levels Factorsa

A (dg/h) B (wg/�) C (�◦) D (Ng)

1 0.30 0.30 70 5
2 0.55 0.525 90 6
3 0.80 0.75 110 7
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Table 3
Orthogonal array L27.

Exps.a Factorsb

A B C D

1 1 1 1 1
2 1 1 2 2
3 1 1 3 3
4 1 2 1 2
5 1 2 2 3
6 1 2 3 1
7 1 3 1 3
8 1 3 2 1
9 1 3 3 2

10 2 1 1 2
11 2 1 2 3
12 2 1 3 1
13 2 2 1 3
14 2 2 2 1
15 2 2 3 2
16 2 3 1 1
17 2 3 2 2
18 2 3 3 3
19 3 1 1 3
20 3 1 2 1
21 3 1 3 2
22 3 2 1 1
23 3 2 2 2
24 3 2 3 3
25 3 3 1 2
26 3 3 2 3
a Factors are defined as follows: (A) Ratio of groove depth to mixing channel
eight. (B) Ratio of groove width to groove pitch. (C) Angle of the groove. (D) Number
f grooves per half-cycle.

ariance for the experiment with optimum settings of design
arameters. Applying this method, the number of experiments
simulations) can be reduced significantly by using the orthogonal
rrays which provide a set of well balanced experiments, and the
ensitivity of the design parameters on the mixing index can be ana-
yzed through the Taguchi’s signal-to-noise ratios (S/N) which can
lso be used to predict the optimum values of the parameters. For
his sensitivity analysis, variables are divided into design parame-
ers and source of noise (noise factor) and the design of experiments
DOE) is used to determine the design parameters which mini-

ize the effect of noise factors on performance characteristics,
or which Taguchi method uses the loss function and S/N ratio.

hen a response never has a negative value and its target value
s ideally zero, these are referred to as smaller-the-better charac-
eristics. Since the target response of the mixing index is ideally
ero (see integrand in the square root of Eq. (1)), the static Taguchi
nalysis for the problem with the smaller-the-better character is
erformed for having an initial estimation of optimum values of
esign variables.

The S/N ratio is a log function and in this study it is defined to
se output values from simulations. Therefore, the square of the
tandard deviation of concentration at the outlet of micromixer is
alculated by using Eq. (2):

2 = 1
n

n∑
i=1

(ci − c∞)2 (2)

here ci is the concentration distribution of one of the fluids at the
th cell on the outlet, c∞ is the concentration of complete mixing
nd n is the number of cells defined by the mesh on the outlet
lane. Then, the signal-to-noise ratio with the smaller-the-better
haracter can be evaluated by Eq. (3):

S

N
= −10 log �2 (3)

For four design parameters with three levels each (see
ables 1 and 2), the orthogonal array L27 is used to define 27 experi-
ents or design points; the columns in the original L27 table for the

actors of interaction between the four factors are not considered.
his orthogonal array is shown in Table 3.

.3. CFD simulations and analysis

CFD simulations are prepared and solved for the 27 SHM designs
efined by the DOE. The details of the geometries modeled and
eshes used as well as the numerical simulations settings are

escribed in Section 2.

.4. Surrogate modelling (SM). Construction of response surfaces
The values of design parameters Xi of the SHM designs defined in
he DOE matrix (Table 3) and the performance parameters Pj (mix-
ng index, pressure drop) outputs from CFD simulations of the DOE
esigns are used to construct approximated functions or response
27 3 3 3 1

a Experiments which correspond to the design models used in CFD simulations.
b Factors are defined in Tables 1 and 2.

surfaces:

Pj = pj(Xi), i = 1 to N, j = 1 to M (4)

where N is the number of design parameters and M is the number
of performance parameters. There are several surrogate modelling
techniques that can be used to construct the response surface by
interpolating the data and to optimize the objective function on the
response surface. In the present study they are only used for the
construction of the response surfaces whereas the optimization on
the response surface is made by a multi-objective genetic algorithm
(MOGA) according to Section 3.5.

Two surrogate modelling techniques have been used: response
surface methodology (RSM) [27] and radial basis function (RBF)
[28,29].

The RSM normally approximates the objective functions by
polynomial based response surfaces whose order must be cho-
sen first. In the present study, the response model is assumed as
a second order polynomial function that can be expressed as

Pj = ˛0 +
N∑

i=0

˛iXi +
N∑

i=0

˛iiX
2
i +

N∑
i /= j

˛ijXiXj (5)

where N is the number of design variables and the unknown
polynomials coefficients ˛0, ˛i, ˛ii and ˛ij are obtained from a stan-
dard least-square regression applied on calculated responses at the
design points provided by the DOE; the number of coefficients is
(N + 1) × (N + 2)/2.

The RBF is a two-layered neural network with a hidden layer of
radial units and an output layer of linear units. The hidden layer
consists of a set of radial basis functions that act as activation func-

tions whose response varies with the distance between the input
and the centre; the distance between two points is given by the dif-
ference of their coordinates and by a set of parameters. The RBF is
fairly compact, where the linear nature of the radial basis functions
reduces computational cost to have a reasonably fast training. The
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rom Pareto front comparing CFD with optimization method results (from [22]).

odel for the function is a linear combination of a set of weighted
asis functions; the prediction capacity of the network is stored in
he weights which can be obtained from a set of training patterns.
his process is equivalent to finding a surface in multidimensional
pace that provides the best fit to the training data, which is then

sed to interpolate the test data.

To measure the uncertainty of the response surface models a
egression analysis is done [30] to determine the values of two error
actors: R2 (the ratio of the model sum of squares to the total sum
f squares) and R2

adj (R2 adjusted to the number of parameters in

Fig. 5. Mass fraction contours on cross-section planes of mixing channel
built by RBF method: (a) scatter of iterations history and (b) scatter of six samples

the model). A value of R2
adj in the range 0.9–1.0 indicates that the

response surface model predicts accurately the response values.

3.5. Searching of optimum designs
Numerical optimization methods are efficient tools for finding
correlations between geometrical parameters and device perfor-
mance outcomes from CFD and optimizing their combination. They
have been applied to optimization problems in areas such as aero-
dynamic optimization [31], mechanical and structural design [32].

of optimum design RBF pf19 from first part of optimization study.
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ince micromixing optimization is a non-linear problem, i.e., a mul-
ipeak problem, an exploratory technique has to be used for seeking
he global optimum; it evaluates designs throughout the parameter
pace and only makes use of the computation of the objective func-
ions values. In this study, a genetic algorithm has been used due to
ts capacity to be implemented to solve multi-objective optimiza-
ion problems. This multi-objective genetic algorithm (MOGA) can
onverge to a population composed of individuals that belong to
he Pareto front of the solutions. To avoid the high number of eval-
ations of the objective function required to reach an optimum
onfiguration, the actual objective functions are replaced by the
pproximated functions (response surfaces) that are constructed
y surrogate modelling.

The non-dominated sorting genetic algorithm (NSGA-II) [33] has
een used in this study due to its effectiveness working with non-

inear problems and in finding the optimum solutions of Pareto
ront. The NSGA-II is applied on the response surfaces with the
ollowing initial parameters values: population size = 26, number
f generations = 100, crossover probability = 0.9, crossover distribu-
ion index = 20 and mutation distribution index = 100. These values
ere changed systematically to reach number of generations of

00, crossover distribution of 50 and mutation distribution index
f 250 with the purpose of evaluating the singularity of the con-
ergence of predicted optimum designs test. No constraints were
pplied on the design and performance parameters. The conver-
ence was confirmed and the initial parameters values were used
o obtain the optimum designs geometries. The application pursues
he maximization of the mixing index and the minimization of the
ressure drop.
. Results and discussion

The first part of this study has been the application of the opti-
ization methodology on a set of designs defined by the design
xing channel of optimum design RBF pf19 from first part of optimization study.

parameters shown in Table 1 and organized in the orthogonal array
L27 (Table 3). Cortes-Quiroz et al. [22] used the RBF method to build
the response surfaces for the objective functions mixing index and
pressure drop since it gave better accuracy (R2

adj > 0.9) in particular
for the mixing index response. The results of applying the NSGA-II
on these response functions are shown in Fig. 4 for Re = 1, where
Fig. 4a shows the plotting of 3200 iterations of designs points in
the space mixing index vs. pressure drop where the Pareto front is
clearly defined and Fig. 4b shows the validation of six samples of
the Pareto front that were selected and evaluated with CFD. From
Fig. 4a, the application gives an in-bounded set of optimum designs,
i.e., the ranges of the two performance parameters are in the pos-
itive zone with coherent values (0–1 for mixing index and >0 for
pressure drop), for the entire population generated by the genetic
algorithm. These results confirm the ranges and levels of the design
parameters in Table 1 were well selected for the DOE. In Fig. 4b, the
difference in percentage between the CFD outcomes and the val-
ues predicted by the optimization method (dividing the difference
between the CFD and the Pf values by the CFD value) is about 3%
average in mixing index and 1% average in pressure drop, which are
quite reasonable for the method employed and the trend of mixing
performance vs. pressure drop in the designs is clearly predicted.

For Re = 1, the values of the design parameters of the six selected
optimum designs of the Pareto front indicate that the geometric
dimensions that vary significantly are only the height of the chan-
nel (h) and the depth of the groove (dg) [22]. The aspect ratio of the
channel is very influential on the mixing performance but the con-
trol of the pressure loss due to the multi-objective optimization do
not let it reach the maximum possible value of 3.20 (see Table 1).

Other design parameters do not change much along the Pf and they
tend to the following optimum values: dg/h = 0.60, wg/� = 0.75 and
b = 0.68. One can see that very deep grooves do not necessarily
improve mixing when the aspect ratio is also changing and what
is important is the ratio dg/h which, in this first part of the study,
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Fig. 7. Outcomes from CFD at the outlet of mixing channel of 27 DOE designs d

ends to be constant at 0.60. Also, the ratio wg/� adopts the highest
ossible value of 0.75 (see Table 1) showing that wide grooves pro-
ote higher flow rate inside them which generates the transversal

ow that help mixing and also reduce the pressure loss in the sys-
em, which is in agreement with the main conclusion of Yang et al.
14]; parameter b tend to be around 0.68 which confirms the find-
ng of Stroock et al. [8] that a value of 0.67 makes the transverse
ow occupy most of the cross-sectional area of the mixing channel.

To continue with the second part of this study where two other
esign parameters: angle of the groove, �, and number of grooves
er half-cycle, Ng, are going to be evaluated with the optimiza-
ion methodology, one optimum design of the six samples of the
areto front (Fig. 4b) is selected as a reference design. This is actu-
lly the 19th design from 32 in the Pareto front and it gives the
aximum mixing index. This optimum SHM design (from now on

alled RBFpf19 design) has the following geometric parameters:
/h = 2.55, dg/h = 0.60, wg/� = 0.75 and b = 0.69, for the following
eometric dimensions: h = 78.5 �m, dg = 47.1 �m, wg = 75 �m and
w = 137.6 �m, and it gives performance parameters outcomes of
i = 0.79 and �p = 64.54 Pa. Figs. 5 and 6 show the contours of some

hysical properties in the flow of Re = 1 in the RBFpf19 design. These
ontours will be used for analysis and comparison with contours
n the optimum design that resulted from the second part of the
ptimization study.
In the second part of this study, the optimization methodology is
pplied to a set of designs defined by the design parameters shown
n Table 2 and organized in the orthogonal array L27 (Table 3). This
ime, the RSM method was used to build the response surfaces,
t gave better accuracy (R2

adj > 0.94) for both objective functions
by Table 2 and OA L27 (Table 3), Re = 1: (a) mixing index and (b) pressure drop.

which can be explained by the small range of the design parameters
(see Table 2).

For the new design of experiments (Table 2 with Table 3), the
mixing index and pressure drop outcomes from CFD at the outlet
section of the mixing channel are shown in Fig. 7 for the 27 DOE
designs at Re = 1. The variation of the mixing index is large between
0.3 and 0.83 approximately and it does not reveal clearly the effect
of the design parameters when Fig. 7a is contrasted with the orthog-
onal array of experiments in Table 3. In Fig. 7b, the variation of
pressure drop is between 61 and 81 Pa approximately; comparing
Fig. 7b with the second column (factor B) of Table 3 one can notice
the significant influence of the design variable wg/�, ratio of groove
width to groove pitch, on the level of pressure drop in the mixing
channel of the 27 DOE designs.

To evaluate the contribution that each level of a design param-
eter has on the S/N ratio of the mixing index, the mean of the S/N
ratios of the experiments where the level of the design parame-
ter is present in the OA L27 is calculated. The results are displayed
in Fig. 8, where the positive slope of the curves indicates that
increasing the value of the corresponding parameter results in a
higher mixing index, and vice versa. From Fig. 8, the S/N analy-
sis shows that for the ranges of the design parameters in Table 2,
the highest mixing index at Re = 1 at the end of the optimiza-
tion process is likely to be for the following values: parameter A,

dg/h = 0.8, parameter B, wg/� = 0.75 and parameter C, � around
90◦, whereas parameter D, Ng, does not show a value for which
the mixing index is clearly higher. This analysis only shows the
sensibility of mixing index to the design variables and it can-
not give the optimum values of the design parameters since
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ig. 8. Influence of design parameters on S/N ratio of mixing index for 27 DOE
esigns defined by Table 2 and OA L27 (Table 3), Re = 1.

he orthogonal array uses discrete values of design parameters
Table 2). The optimization with MOGA on response surfaces will
xplore a continuous space in the ranges defined for the design
arameters.

Fig. 9 shows the results of the iterations from applying the NSGA-

I on the response surfaces built with RSM method. For these results,
he algorithm examined a continuous range (defined by the top and
ottom values of parameters in Table 2) for all design parameters.
ig. 9a shows the plotting of 3200 iterations of designs points in the

ig. 9. Results from application of NSGA-II algorithm (using continuous values for optim
SM method: (a) scatter of iterations history and (b) scatter of designs on the Pareto fron

ig. 10. Results from application of NSGA-II algorithm (using discrete values for optimiza
ethod: (a) scatter of iterations history and (b) scatter of designs on the Pareto front.
ering Journal 160 (2010) 852–864

space mixing index vs. pressure drop and Fig. 9b shows the plot-
ting of the 32 design nodes in the Pareto front. Fig. 10 also shows
the results of the iterations of the NSGA-II searching the optimum
designs but in this case the algorithm examined continuous range
for the design parameters with the exception of the angle of the
groove, �, which was limited to discrete values with intervals of
5◦ in the range 70–110. For this case, Fig. 10a shows the plotting
of 3200 iterations of designs points and Fig. 9b shows the plot-
ting of 6 design nodes that resulted in the Pareto front (from the
32 nodes, some of them give exactly the same values of mixing
index and pressure drop for the accuracy of computation, resulting
in only 6 design nodes). A close comparison of the list of designs
in the Pareto fronts depicted in Figs. 9 and 10 reveals that the 6
designs in the Pareto of Fig. 10 are included among the 32 designs
of the Pareto of Fig. 9. This reveals the consistency of the algorithm
convergence.

Therefore, the five designs of Pareto front in Fig. 10 that give
higher mixing index are selected for the validation of the predicted
response outcomes with numerical simulations. In Fig. 11, the CFD
outcomes are shown with the values of corresponding design nodes
absolute values is 0.55% in mixing index and 0.14% in pressure drop
with maximum absolute differences of 1.13% in mixing index in the
second design node and 0.31% in pressure drop in the third design
node (the order is taken from Fig. 11, from low to high pressure

ization of design parameter �, angle of the groove) on response surfaces built by
t.

tion of design parameter �, angle of the groove) on response surfaces built by RSM
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Table 4
Design parameters of Pf designs from optimization on RSM surface, Re = 1.

Pf design Params.

A (dg/h) B (wg/�) C (�◦) D (Ng)

RSM pf1 0.8 0.75 70 6
RSM pf2 0.8 0.75 70 5

higher values of ratios d /h and w /� increase mixing and reduce
ig. 11. Mixing index vs. pressure drop in five selected designs of the Pareto front
rom optimization on RSM surfaces and corresponding CFD outcomes.
rop). These very small differences are mainly due to the accuracy
f the response surfaces. Fig. 11 shows there is an increment in
ressure drops along the five designs but the trend in mixing index

s not evident what can be due to computational errors considering

Fig. 12. Vector plots on cross-section planes of mixing channel of opt
RSM pf3 0.8 0.75 75 6
RSM pf4 0.8 0.75 75 5
RSM pf5 0.8 0.75 80 6

the small range of variation of mixing index between 0.8237 and
0.8322 in the Pareto front.

Table 4 shows the values of the design parameters and Table 5
shows the corresponding geometric dimensions of the five selected
designs of the Pareto front. From Table 4 one can conclude that
g g

pressure loss when the aspect ratio is fixed. In the first part of
the study (design of experiments with Tables 1 and 3), the aspect
ratio changed during the optimization and it apparently controls
the variation of the dg/h ratio which tends to 0.60 in the Pareto

imum design RSM pf5 from second part of optimization study.
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Fig. 13. Mass fraction contours on cross-section planes of mixing cha

ront. The influence of parameter � on mixing index is not explicit
rom Table 4 and Fig. 11 but it is clear that pressure drop increases
ith an increase in the angle of the groove, in the Pareto front of

ig. 9b the value of parameter � goes from 70 to 81.02 with pressure
rop increasing from 62 to 63.6 Pa. These values are very similar
o those obtained in the Pareto front of Fig. 10b although in this
ase the optimization employs discrete values of parameter �. The
nfluence of parameter Ng on mixing index and pressure drop is not
elevant compared to the other three design parameters, what can
e explained by the small range, 5–7, used in this study, although
g is equal to 6 in 20 of the 32 designs in the Pareto front of Fig. 9b.

The effect of the parameters dg/h and wg/� can be seen in Fig. 12.
his figure shows the vector plots on cross-section planes every
.3 mm along the mixing channel of the optimum design, the one
hat gives the highest mixing index, in the Pareto front of Fig. 10a

design RSM pf5 in Table 5). The formation of vortices is promoted
y the angle of the groove (whose value is 80◦ from the optimization
tudy) that creates a transverse flow which rotates the stream of
uids throughout the length of the mixing channel. The vortices

able 5
eometric dimensions (�m) of Pf designs from optimization on RSM surface, Re = 1
nd corresponding values of mixing index and pressure drop at the outlet section.

Pf design Dimens.

h dg wg bw Mi �p (Pa)

RSM pf1 78.46 62.77 75 137.6 0.8220 62.14
RSM pf2 78.46 62.77 75 137.6 0.8204 62.34
RSM pf3 78.46 62.77 75 137.6 0.8278 62.98
RSM pf4 78.46 62.77 75 137.6 0.8221 63.16
RSM pf5 78.46 62.77 75 137.6 0.8342 63.35
of optimum design RSM pf5 from second part of optimization study.

cover large part of the cross-section of the channel and the highest
values in their optimization range adopted by parameters dg/h and
wg/� results in the formation of a strong main vortex that enhances
mixing of the fluids.

Optimum design RBFpf19 from the first part of the optimization
study [22] was taken as the reference design to perform the sec-
ond part of the study that resulted in the optimum design RSM pf5
(Tables 4 and 5). The comparison of geometries of designs RBFpf19
and RSM pf5 is summarized in Table 6.

Table 6 reveals that the whole optimization procedure for a total
of six designs variables gives an optimum design once completed
the second part of the study; the differences between first part opti-
mum design RBF pf19 and second part optimum design RSM pf5 are
in the ratio of groove depth to channel height, dg/h, and the angle of
the groove, �. The parameter dg/h, that changes from 0.6 in RBF pf19
to 0.8 in RSM pf5, is the design variable whose effect on mixing is
more significant to redefine the optimum design in the second part

of this study; an increase in dg/h increases mixing index, result that
is consistent with previous studies [14,16,18], and reduces pressure
drop. On other hand, an increase in � increases pressure drop, what
is evident from Tables 4 and 5, and the effect of � on mixing index

Table 6
Geometric dimensions (�m) of Pf designs from first (RBF pf19) and second (RSM pf5)
parts of the optimization study, Re = 1 and corresponding values of mixing index and
pressure drop.

Pf design Dimens.

h dg wg bw �◦ Ng Mi �p (Pa)

RBF pf19 78.46 47.08 75 137.6 90 6 0.79 64.54
RSM pf5 78.46 62.77 75 137.6 80 6 0.83 63.35
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ig. 14. Mass fraction, pressure and velocity contours on symmetrical vertical plan

s not explicit; from information in Tables 4 and 5, the control of
arameter � during the second part of the optimization shows mix-

ng increases slightly when � increases from 70 to 80◦, result that is
onsistent with the Taguchi’s S/N ratio analysis (Fig. 8) that found �
as mild impact on mixing index and estimated its optimum value
ould be around 90◦.

Fig. 13 shows the mass fraction contours on several cross-
ections of the mixing channel and Fig. 14 shows the contours of
ass fraction, pressure and velocity on a symmetrical vertical plane

rossing longitudinally the mixing channel of the optimum design
SM pf5. Contours in Figs. 13 and 14 can be compared to the con-
ours in Figs. 5 and 6, respectively, which correspond to design RBF
f19.

In Figs. 5 and 13, the contours of mass fraction at cross-sections
very 0.3 mm of the mixing channel (the groves are not included)
ppear quite similar until x = 2.1 mm where some different patterns
an be distinguished. The similarity of the flows at Re = 1 is due to
he several geometric features both designs have in common (see
able 6). In Figs. 6 and 14, the mass fraction contours show how
thanol occupy most of the cross-section of the grooves of the first
alf-cycle whereas water occupy most of the mixing channel on the

ongitudinal symmetry plane because it is convectively forced to fill
he spaces ethanol left for migrating into the grooves; the vertical

otion induced by the grooves in the channel can be identified by
he zone adjacent to the top wall of the channel between the first
nd second cycles which is occupied by ethanol that has rolled up
n the channel, this is more evident in the case of RBF pf19 (Fig. 6).

ass fraction distribution (flow) appear more perturbed in the case
f RSM pf5 (Fig. 14) from the beginning of the second half-cycle
owards the outlet of the channel. There is not major difference
n the patterns of contours of pressure and velocity on the sym-

etrical vertical plane of the channels; contours of velocity show

ow flow accelerates over the ridges between grooves due to the
eduction of the cross-section area in this zones and the presence of
tagnation zones (dead zones) in about third (RBF pf19) and fourth
RSM pf5) the cross-section of the grooves, which cannot be com-
ared directly considering the different values of dg/h of the two
ixing channel of optimum design RSM pf5 from second part of optimization study.

designs. Formation of dead volumes against mixing performance
is directly affected by this design variable and its evaluation using
different fluids and flow conditions (Reynolds number) is not in the
scope of this paper.

5. Conclusions

A truly optimization methodology for micromixers based on the
integration of CFD and numerical optimization techniques (DOE,
SM and MOGA) has been employed for the multi-objective opti-
mization of the geometries of a grooved micromixer, the staggered
herringbone micromixer (SHM), to maximize mixing index and
minimize pressure drop in the channel. In the first part of the opti-
mization study, the conclusions of Cortes-Quiroz et al. [22] have
been reviewed and the optimum design that resulted from the
optimization of four design parameters (aspect ratio of the mixing
channel, w/h, ratio of groove depth to channel height, dg/h, ratio
of groove width to groove pitch, wg/�, and the asymmetry factor
of groove, b) was taken as reference design for optimization of two
additional design parameters: angle of the groove, �, and number
of grooves per half-cycle, Ng (Table 2).

The methodology process cycle is repeated for the second part
of the optimization study. The DOE method is used to create experi-
mental tables of 27 designs based on the reference design. Detailed
analysis of signal-to-noise ratios for these designs at Re = 1 (Fig. 8)
shows that two design parameters have significant effect on mixing
index: dg/h and wg/�, whereas the effect of � was not explicit and
Ng appeared not significant for mixing in the interval (see Table 2)
used. Two surrogate modelling techniques have been employed,
radial basis function (RBF) and response surface model (RSM). The
RBF method gave very accurate approximation of the response
functions in the first part of the optimization study whereas the

RSM was more accurate in the second part due to the relative small
range used for design parameters. Applying MOGA on the response
surfaces, the Pareto front of mixing index vs. pressure drop is
obtained. The Pareto front shows the trend and quite approximated
values of mixing index and pressure drop in designs that respond to
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he optimization goal. Five designs in the Pareto front that predict
igher mixing index were validated by CFD and the comparison of
he results shows maximum absolute difference of 1.13% in mixing
ndex and 0.31% in pressure drop which reveal the methodology
an give good accuracy for the prediction of optimum designs for
hich the accuracy of the response surface is critical.

The optimum designs (high mixing performance with lowest
ossible pressure drop) show the significant impact of parameter
g/� on mixing, increase in the width of the grooves increases the
ixing performance in the SHM design. Optimum value of param-

ter wg/� of 0.75 corresponds to the maximum value in the range
efined for this study (which was limited considering materials
nd fabrication issues); this is valid when optimizing with a vari-
ble aspect ratio or a fixed aspect ratio. Parameter dg/h is also found
o have effective influence on performance parameters, increase in
g/h increases mixing index and reduces pressure drop. Optimum
alue of parameter dg/h of 0.60 corresponds to the optimization
ith variable aspect ratio and it reaches the maximum value in its

ange, 0.8, when optimizing with fixed aspect ratio; this shows the
hared effect these parameters have on the performance parame-
ers, in particular the aspect ratio was found the most influential on
ressure drop from the first part of the study. The effect of parame-
er � on the performance of the micromixer is not as explicit as the
revious parameters; it is found that an increase in � increases pres-
ure drop and mixing increases slightly when � increases from 70 to
0◦ what is explained by the presence of secondary flows in more
ransversal direction. In general, parameter � has less significant
mpact on mixing than parameters wg/� and dg/h. The definition
f a groove pitch in direction perpendicular to the walls of grooves
akes geometric dimensions � and wg to be independent of each

ther, what is important for the optimization and evaluation of
arameters wg/� and � without much confounding of their effects
n performance of the micromixer; this is critical and, to the knowl-
dge of the authors, this definition of groove pitch, �, is applied for
he first time in this paper in a study that includes parameter � in
he optimization of SHM design. Finally, the influence of parameter
g on mixing index and pressure drop is found not as relevant as

he other three design parameters, what can be explained by the
mall range, 5–7, used in this study.
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